AD bso 336

Research Division
CONTROL DATA CORPORATION
Minneapolis, M? .nesota 55440

FINAL REPORT

COMPARISON OF
JIMSPHERE AND RAWINSO...E

WIND SHEARS

by
A. D. Belmont

W, C. C. Shen

This study has been supported by the Advanced
Research Projects Agency, Washington, D, C. by
ARPA Order No. 756, under contract with the

Office of Naval Research, Contract N00014-66-C0127

s 2
STATENSNT N0. T

1imited
piatribution of This Docusent i3 Uni

15 November 1966

e
oA



BEST
AVAILABLE COPY




ABSTRACT

Cheracteristics of the wind shear for 25 meter layers were prepared
from a series of 175 detailed wind ascents to 18 km taken with a Jimsphere
balluon followed by FPS-16 radar from November 1964 to June 1965. To
determine how well the shears for small layers could be estimated from
ravinsonde data, two new sets of ascents were created from the original
Jimsphere data. One set consisted of wind data at 23 levels correspond-
ing only to standard pressure levels, and the other set at the 46 "mirute"
levels at which winds are reported on observational forms. The differ-
ences in results were thus due only to the differing vertical resolution

in the three series.

The results showed that the magnicudes of the mean pressure and
minute shears for 25 meters are smoothed to about 1/3 and 1/2 respec-
tively of the Jimsphere shkears. .Graphs of corrections for pressure and
minute data needed to approxima*te the Jimsphere shear are presented
both in terms of thickness of layer, and, for 25 m as a function of

height.

The regressions proposed by Essenwanger between the mean, or the
standard deviation, of the shear and the mean thickness of the layer, and
also tetween the standard deviation and the mean of the shear are con-

firmed in principle using "imsphere data.

Tabulations of bivariate frequency distributions (direction change
vs magnitude), means and standard deviations of five parameters relating
Jimsphere shears and winds to those of pressure and minute data, by 2 km

layers, are included, both for the total data sample and for the time

e



changes in a sub-set consisting of 59 pairs of observations taken from

1-4 hours apart.

The mean Jimsphere shear for a 25 meter layer increases from 0.3 m/sec
at the lowest levels to 0.5 at 11 km and to 0.8 at 17 km, with a standard

deviation of about 70% of the mean.
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I. Introduction

t is necessary, for certain applications, to know the value of the

vertical shear of the horizontal wind at very fine altitude increments.
As this information is not normally available, it must be estimated from

usual rawinsonde or radio wind observations.

O RTINSOt

iy

Using a special series of high resolution wind observations from

FPS-16 radar tracking of a Jimsphere balloon, this study attempts to

—

estimate the wind shear for 25 meter layers from usual rawinsonde data

LI ‘«j

and compares results with those of other papers. As a seco:d part of

this paper, statistics of the shears for 25 meter layers are presented.

| S

II. Data

i R et

A

The best available data for this research is the series of special

b

wind observations taken at Cape Kennedy using a specially designed
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4luminized balloon with roughened surface, called a "Jimsphere" and

P ]
[ ]

tracked at 0.1 second intervals by FPS-1€¢ radar. The data consists of

175 ascents from Novemter 1964 to June 1965, each repcrting about 700

gy

levels between about 300 m and 18 km near which altitude the Jimsphere

floats. The winds are smoothed by a least squares fit over a 50 meter

v |

layer and p-esented at each 25 meters. One hundred twelve of the 175

b

ascents have been published (Scoggins and Susko, 1965). Al data used

HH N

were made available by NASA, Huntsville.

A theoretical study (Scoggins, 1963) of accuvacy of measurement

i-.dicated an RMS error in wind data of about 1 m/szc, but denended

 gun|

1N H MO DS s

st
i
‘ e




=

'“‘":

upun unknown errors inm radar tracking. An avaluation based upon simul-
taneous observatizn by two radars yielded RMS errors in wind speed
generally less than 0.5 m/sec, although occasional large errors can

appear (Scoggins and Susko, 1965).

To compare this fine-scale data with rawinsonde observ.tious, the
latter were simulated by extracting Jimsphere data only at height corres-
ponding to (1) standard pressure surfaces, and to (2) those neights
reported in maximum available detail on the original computation forms
(WBAN-20)}. The relative information content of these three sources in
the lowest 18 km isshown in Table I and the equivalent levels used cre

shown in Table II.

by confining the data to that of a single source and simulating the
other sources by degrading the vertical vesolution of the Jimsphere data,
we can attribute differences in resulting shears to the effect of resoclu-
tior. alone. Had actual rawin data for the same station and day been used,
ttere would have been additional differences whici could be caused by
the observations being taken at different time and location and ty using
different observational methbrzs., While it would be desirable also to
isolate the effect  the differing amount of smoothing in the two forms
of observation which arise from the single reading once a minutc and the
average instantaneous rcadings while the balloon ascends a 50 mete~ layer,

this can not be done with the available data.

The Jimsphere data were used to prepare three separate sets of

ascents:
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Table I: kelative Detail of Three Types of Available Daia up to 18 km

No. of
Source Vertical Rusolution levels
Jimsphere Overlappinz 50 meter 720
means, given each 25 meters
Rawin (WBAN-20 1 min. to 7 km (approx. 300 m)
46
original record) 2 min. above 7 km (500-10C0m)
Rawin (Standard 50 mb to 12 km (500m)
23
pressure levels) 20 mb to 18 km (1000m)
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o l. The original 25 meter Jimsphere data for some 700 levels. (J)

™

2. Jimsphere data for some 23 fixed heights cerresponding to the
annual mean height of the 23 standard pressure surfaces from the

surface to 80 mb (17,900 m) at Cape Kennedy. (P)

TR AL L DAL R ittt et

3. Jimsphere data for 46 levels corresponding to those represented

it

by one or two minute data on WBAN-20 for Cape ‘ennedy. (M)

IR L

As ccnstant pressure or regular minute data zre the only data nor-

[

mally available from wkich to »stimate shears, it was desired to see how
well they could do so, using simplest methuods. Frcn the latter two sets
of data, winds were estimated at each 25 meter level u:ing only linea:x
interpolation. The differences of the estimated shears using the crude
pressur:-level or minute data, from the actual Jimsphere shears, provide
the relative error or "correction factors' to obtain the average shears

for shallew layer:z from generally available dat:o. For this first attempt

QL T R A R

only linear interpoiation was used; the use of higher order fitting
methods might have reduced ths differences at the expense of more compli-
cated computatiors. In any event, the derived shears will always be

smalier than those from the original detailed data and the differences

R

will depend upon the interpolation method used.

At those levels for which pressure (or minute) data are availakle,
and for which no interpolation is needed, a zero error exists between 25

meter data and original Jimsphere data. In all statistics, these non-

Al

interpolated levels are therefore excluded in computations of errar.
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Table 1I: Equivalent Jimsphere Levels to Rawinsonde Pressure

23 Pressure Data Levels

mb

S
1000
950

900

——

850

800

—)

750

700

650

600

550

il |iiE|h‘3

500

450

400

350

300

250

200

’

150

125

- 100

- 80

meters
0

150

600 '

1075

1575

2075

2625

3200

3800

4450

5125

5875

6700

7600

8575

9675

10925

12375

13225

14175

15273

16575

17900

and Minute Data

46 Minute Data Levels

meters meters
525 7025
900 7525
1275 8075
1600 8575
1900 9075
2200 9550
2525 10050
2800 10525
3050 11075
3300 11600
3600 12100
3825 12625
4050 13125
4300 13425
4525 13700
4775 13950
5025 14500 |
5250 15106 |
5500 15700 |
5750 16250 |
6000 16825 |
625 17375
6500 17950
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For convenience, the following notation will be used:

J

li

Original detailed Jimsphere wind
P

Equivalent Constant Pressure wind

M = Equivalent Minute wind

JS, PS, MS = Jimsphere, Pressure, Minute vector shear

Subscript s = Magnitude of wind or shear vector

Subscript d = Di ference in the directions of wind or
of shear vectors

F.D. = Frequency distribution

6 or S.D. = Standard Deviation

A = time change

Bivariate frequency distributions, means and standard deviacions of
the five basic parameters below w.=» computed for 2 km layers for the
coi.solidated 175 ascents. These tabulations are reproduced in Appendix

A. The means and deviations were also plotted by computer for each 25

meter level.

1. (Js)s

f
2. {J - P)s
3 - M)s

4. (Js - PS)s

5. (JS - MS)s

To evaluate shori-period time changes, some 59 pairs of obs:=“ations
taken from cne to four hours apart, were also processed in the same man-

ner. The summaries are given as Appendix B.

Direction change statistics were first separated into clockwise and

counter-clockwise to see if persistent patterns of wind interpolation
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error, or if shear existed. As no significant differences were found by

level, all direction changes were treated without regard to sign.

To keep the size of this report withir practical limits, most para-
meters are tabulated in the Appendi» summarized for 2 km layers. Other
detailed tabulations are available but are only shown graphically here.
For simplicity, the symbolic form of each parameter will be used in the

discussion,

ITI. Results

A. Estimating fine-scale shear from rawinsonde data

The differen:es in the shear inuicated by the estimated data,

from Jimsphere original data are shown in Figs. 1-14. Fig. 1 shows the

variation with height of (JS)s - (PS)s for each 25 meter increment.
There is a g neral increase witrh neight of the error from 0.3 m/sec/25m
at 1 km to about 1 m/sec at 17 km. The corresponding st :ndard devia-
tions in Fig. 2 show the same increase with height with values about

60% of the means. The numerous peaks in the deviation profile are
caused by occasional, extreme shears z’though no physical reason is known
for these occasional, large values., Separate frequency distributions
wire made at each 25 m level, for all basic parameters, and each peak in
the deviation profile curves (Figs. 2, 4, 22) could always be traced to
the occurrence of a single shear generally in the classes 4-6 or 6-8
m/sec/25m. Those as large as 5 m/sec are discussed separately below.

One large occurrence, compared to the 140 to 170 instances in the classes




less than 2 m/sec is sufficient to cause these noticeable peaks. Figs.
3 and 4 are almost identical to Figs. 1 and 2, and, as will be seen,

Figs. 1 and 3 are almost the same as Fig. 21, the Jimsphere shear itself.

It mighc thus appear that both (PS)s and (MS)S are relatively very small

comparsd to (JS)S. However, in Figs. 5 and 6, the values of Tigjs and
?EES; are seen to be larger than one would expect from the differences

of Figs. 1 and 3 from Fig. 21. This is because the mean of the diffe:-
ence in magnitude of pairs of vectors includes the unknown contributions
of the varying direction changes of corresponding pairs as well as magni-
tude changes. The mean of (PS)S or (MS)S is therefore not derivable
indirectly from other parameters and must be computed from the original

observations.

The mean errors and deviations in interpolating winds from the P and
M data are shown in Figs. 7-10. A" levels for which P and M data exist
there is of course no error and hence the curve has a serrated appearance.
The errors normally increase with height but an exception to this occurs
near 13 km where the vertical resolution of the P, and especially of the
M, data is increased, which causes a reduction in interpolation error.
The maximum errors from the M winds are about one-half those cf the P
winds due to the doubled density of M data witk height. Another pro-
perty of the PS and MS data is the discontinuous changes of 1ayérs with
constant shear with height, shown in Figs. 5 and 6, caused by linear

intexpolation between given data levels.

One of the principal aims of this study is to approximate the JS

from /S or MS. To consolidate the results of Figs. 1-10, the data in
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Figs. 11-14 show the variation with height of the relative e.ror, defined

as:

(JS)s o (PS)s and (JS)s = (MS)s

(PS) (MS)s

This can be applied to usual pressure data to estimate the finer scale

shear.

hie values of relative error indicate the percentage to be added to
the (PS)s or (MS)s values. Hence if Fig. 11 indicates a relative error
of, say, 3, then che (JS)s is 4 times the (PS)S. Thus Figs. 11 and 13
show that (JS)s varies from 3 to 5 time the (PS)s and from 2.5 to 3.5
times the (MS)s data. The standard deviations of (JS)s range from 2.5 to
3.5 times (PS)s and from 2.25 to 3 times (MS)s data. The minimum error

near 13 km shows up in the mean relative error of (MS)s graph also.

As 2553; and ?ﬁgsz are sometimes very small, the relative error
computations occasionally yielded exceedingly la;ge ratios when indi-
vidual values of (PS)s or (MS)s approached zero. To avoid these extreme
values, the results in Figs. 11-14 were smoothed by eliminating values
of PS or MS less than 0.05 m/sec/25m. Approximately 10-15% of the obser-
vations were eliminated in this way. Thus, when (PS)s or (MS)s is near
zero, correction factors can not be applied. However, it is probably
reasonable to assume that in most instarces, when (PS)s or (MS)s is near

ze? (JS)s is also.

Naturally these results are applicable only to Cape Kennedy. However,

as no other comparative data exists for other stations (except Point Mugu
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and Wallops Island), it may be necessary to use these estimates elsewhere

as a first approximation.

B. Relationship of shear to layer thickness

In his study of this problem, for application to missile response,
Essenwanger (1963) has found that the magnitude of the mean shear can be

related simply to the thickness of the layer through which it is measured:
- 81
S = Ao + a (A 2)

where S is mean shear, A % is layer thickness, Ao, a s a, are constants
which depend on atmospheric conditions which change with season. This
result appears valid only if the data are averages of all non-overlapping
layers of an arbitrary thickness throughout cach ascent, and for many
ascents. For example, each ascent to 30 km would provide 30-1 km layers,
20-1.5 km layers, 60-500 meter layers, etc. The relationship appears te
be independent of how the wind increases or decreases with height.
Essenwanger's results for Cape Kennedy derived from rocket response
measurements have been confirmed by Armendariz and Rider (1966) using
independent photo-theodolite observations of a pibal balloon at White
Sands. The coefficients in the relationship vary with place and month as
would be expected from inherent differences in the wind profiles and the

type of smoothing used in processing the raw observations.

Using the consolidated 175 Jimsphere ascents, over a seven month
period, the regression curve (3) in Fig. 15 was obtained with a_ = 0.058
and a, = 0.68 which agrees reasonably well with those of Essenwanger's

data for February and July (Essenwanger and Billions (1965),
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As spacially observed, fine-scale, data are not normally available,

an attempt was also made to see how well such a regression curve couid be
established using only rawinsonde constant pressure data. To obtain a
wide range of thickness, the linearly interpolated data for 25 meter
levels were used in tha averaging as pressure surfaces are at least 500
melers apart and could not provide points a: -he shorter thickness half
of the scale. Also, had only the levels equivalent to all the reporting
pressure levels in an ascent been used, the thickness between them would
almost always be different and thus the consvlidated time means would
only represent a time average of a certain layor at a particujar height.
Although regressions ébuld be based on such data, the method used was

chosen to make results comparablec with Essenwanger's,

The resulting curves are shown in Fig. 16 which demonstrates how much
—ngs and ?Egjs underestimate ?3375. For 25 meter layers, the ?Egjs is
about twice that of ?ﬁgis and three times that of ?ngs' The errors
naturally decrease as the layer thickness increases towards values

approaching the thickiesses between the observed standard pressure and

1 or 2 minute levels. However, it seems possible that once the relation-

ship is established from temporary Jimsphere ascents, (PS)s or (MS)s data
can be used to estimate finer-scale mean shears. It is interesting to
note that the exponents of the power function tend to increase with the

increase of smoothing.

In the theoretical development by Essenwanger (1963) the standard
deviation plus a constant A° 1s also related to a power function of the
thickness. The constant is determined from the intercept in the regres-

sion between the standard deviation and the mean (for example, as in Fig,
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24). However, Armendariz and Rider (1966 ) show a linear relation with-
out a constant. In our data it appears from a comparison of regressions
similar to those in Fig. 24 for (PS)s and (MS)S, that the constant is very
close to zero and thus is not needed in this particular instance. Fig.

17 shows 6-(.]8)s with a constant for comparison with Ecsenwanger's regres-
sions, and Fig. 17A shows 6—(JS)s without the constant for comparison with
Armendariz's regressions. The coefficient changes slightly if the constant
is not used. Fig. 18 compares O—(JS)s with 6’(?8)8 and Oﬁ(MS)s not employ-

ing a constant.

As the regressions have been drawn by eye here, a closer fit by
numerical methods would change the coefficierts also. Further, it seems
possible from some of our data that a polynomial might provide a better
fit than a straight line which was used for the sake of uniform compari-
son with the literature. This can only be decided by large samples of

independent data from various sources.

The agreement of these various regressions is evidently dependent on
location, seasson and probably altitude range, as well as the degree of
smoothing employed in data reduction. Only analysis of additional data
using a single type of observation, taken frequently at different loca-

tions and seasons, will help identify the contribution of these factors.

C. Direction change with height

To help evaluate the magnitudes of the shear differences dis-

cussed already, that portion of the shear which is due to the rotation

L L
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of the wind is shown in Fig. 19 as a frequency dictributicen of (JS - PS)d
for 2 km layers. Fig. 20 does the same for (JS - MS)d. In both instinces
the direction differences are smillest near 10 km and largest both near

tbe surface layer and at the highest layer.

D. Properties of 25 meter shears from Jimsphere daca

Fig. 21 shows that m;' is about 0.3 m/sec/25m from C-9 km, and
then increases to about 0.8 m/sec/25m at 17 !m. Fig. 22, of the staudard
deviation, shows a similar pattern but reveals numerous sharp pzaks,
especially atout 8 km. Many of these are due to single occuri..ices of
extreme shears which hardly affect the mran at the level but are large
enough to be outstanding in terms of standard deviation. A ‘requency
distribution of ?353; by 2 km layers in Fig. 23 shows how the larger
shear classes increase with height. The frequency curves for layers
below 10 km show similar shapes with peak values in the minimum class
(0-0.25 m/sec/25m). This peak fiequency shifts to 0.50-0.75 m/sec/25m

at 16-18 km.

A linear relation of FJET; to its standard deviation was also pointed
out by Essenwanger (1963). 1In Fig. 24, the slope of the Jimsphere re-
gression is .65 which is less than the .78 of his rocket data. The
rocket data are for unspecified months and period of record which may

help account for the appreciable discrepancy at higher values of shear.

E. Extreme shears

Table III1 shows the source of all nbsarvations of shears greater

than 5.0 m/sec/25m. Examination of the original 50 meter average wind
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Tabie III: Extreme Ji{msphere Shears {25.0 m/sec/25m) g
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S

i

Date Time Level (m) Magnitude (m/sec/25m) g

1/4/65 01042 7475 9.4 %

7525 5.3 ]

7550 5.3 2

1/13/65 2137 2600 7.0 =

2650 8.1 s

2237 13025 6.4 g

1/22/65 0100 8950 5.0 :

10175 6.0 =

10575 8.8 =

:

2/24/65 2029 ~ 15400 5.3 .

2150 15800 6.6 5

2/25/65 0025 15975 5.6 =

16550 5.8 =

17450 5.9

3/8/65 1414 12650 7.3 §

3/9/65 0100 13475 6.3 :

15075 6.2 =

15475 6.3 =

15500 6.6 =

3/9/65 1006 12625 5.7 §

13825 6.0 :

1341 1100 7.3 :

3/10/65 1201 12975 5.0

3/13/65 0122 12950 6.8 z

3/16/65 0100 12475 5.0 =
3/25/65 1300 16925 8.1 =3

16975 7.4 =

=

4/9/65 0000 5150 5.3
16300 7.0 3

16350 6.9 =

4/13/65 1415 12925 5.1 §

13450 6.4 %

1805 13175 6.2 7
&
Foe
6/3/65 1140 16325 5.2 ]
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data showed several instances of abrupt change of direction and/or speed

for one or two layers, then a return to previous values.

It is not possible to state categorically that such observations
could not exist; even if they appear unusual and may have been caused by
ir.strumental characteristics such as radar searching for its target. On
the recommendation of J. Scogginz, NASA, Huntsville, all data were re-
tained as each value is smoothed over about 80 points in each 50 meter

layer.

F. Comparison of shear magnitude with dire-t!on change

In Appendix A a frequency distri.ution will be found, giving by
2 km layers, a bivariate distribution of magnitude against direction
chang> for each of the five parameters treated in this report. Means,
deviations, atsolute and relative frequency are s0 included. The un-
equal class intervals should he noted when interpreting distributions.
This was done to provide greater resolution of the most frequent cate-
gories, Fig. 25 preseucs the frequency distribution of (JS)d foi each
2 km layer from this tabulation. It shows essentially the same features
as already discussed above for Figs. 19 and 20. For extreme direction
changes, (2 10°/25m), maximum frequency (2.8%) occurs at tie surface
layer. This frequency decreases to 0 at the trcpopause and thei in-

creas=ss upward.

G. Short period time variaticns

Among the 175 ascents, there were 59 pairs of observations which

were taken within four hours of each other. The average time interval is
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about one hour but varies from 15 minutes to 4 hours. All five para-
meters were computed as was done for the entire data set and the results
are tabulaced in Appendix B. Time-height sections of the ascents were
even made for each parameter to see if persistent patterns could be found.
All changes used in the tabulations were taken without regard to sign.

In addition, the time variations of the original Jimspher~ winds and of

their vertical shears were graphed.

The dominant feature of the wind profiles about 10 km altitude is
high persistence in time. For example, on February 10, 1965, at 12-16 km
altitude, a small scale p~~turbation existed which could be followed
throughout the series of profiles. Meanwhile, lerge wind shears of 1
m/sec/25m layer occurred at 15-16 km, and persisted for more than 6 hours.

This feativre of persistence can be important in prediction of wind shears.

Fig. 26 shows the frequency distribution of the wind speed change for
consolidated levels. The peak value occurs at the 1.5-2.0 m/sec interval,
and wind speed changes of less than 4 m/sec occur 80% of the time. These

seem to indicate that in general the wind speeds are rather persistent up

to 4 hours.

As may be seen in Figs. 27 a~d 28, the profiles of mean and standard
deviation of wind speed change A;Js depend on altitude. 1In the friction
layer, the mean curve tends to decrease with altitude. The minimum mean
values occur in the mid-tropospherc between 2 to 6 km. The largest values
occur at 10 to 13 km at the subtropical jet stream level, and above 135 km

in the lowe: stratosphere the speed change decreases. The standard devia-

tion shows similar features.
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The frequency distribution of the magnitude of wind shear cha' ge
oy (JS)s in Fig. 29, also shows the same shape as the wind speed changes
PaN Js. 1ts peak frequency occurs at .250 to <375 m/sec/25m. Large shear
<hanges of greater than 1.0 m/sec/25m a-e infrequent, occurring in less
than 15 percent of the observations. Such large shear changes are usually
fouad above 10 km altitude. The mean values of wind shear change are
shown in Fig. 30. Those above 10 km altitudes are much larger than at
‘ower altitudes. The standard deviation of the wind shear change repre-

sented in Fig, 31 shows similar features.
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